CENTROIDAL MEAN LABELING OF GRAPHS

SAMPATH KUMAR \mathbf{R}^{1*} AND K M NAGARAJA¹

ABSTRACT. In this paper the Centroidal mean labeling of cycle containing graphs such as Triangular Ladder TL_n , cycle C_n , Polygonal chain G_{mn} , Square graph P_n^2 , $L_n \bigcirc K_{1,2}$, Ladder L_n are found.

1. INTRODUCTION AND PRELIMINARIES

Abundant literature exists as of today concerning the structure of graphs admitting a variety of function assigning real numbers to their elements so that given conditions are satisfied. Here we are interested the study of vertex functions $f: V(G) \to A, A \subseteq N$ for which the induced edge function $f^*: E(G) \to N$ is defined as $f^*(uv) = \lceil \frac{2[f(u)^2 + f(u)f(v) + f(v)^2]}{3(f(u) + f(v))} \rceil$ or $f^*(uv) = \lfloor \frac{2[f(u)^2 + f(u)f(v) + f(v)^2]}{3(f(u) + f(v))} \rfloor$ for every $uv \in E(G)$ are all distinct.

As we know that the notion of mean labeling was introduced in a paper by Somasundaram and Ponraj [7]. A graph G with p vertices and q edges is called a mean graph if there is an injective function f from the vertices of Gto 0, 1, 2, 3, 4..., q such that when each edge uv is labeled with $\frac{(f(u)+f(v))}{2}$, if f(u) + f(v) is even, and $\frac{(f(u)+f(v)+1)}{2}$ if f(u) + f(v) is odd, then the resulting edge labels are distinct.

We introduce Centroidal mean labeling of some standard graphs.

Graph: A graph G is a pair (V, E), where V is a nonempty set and E is a set of unordered pairs of elements taken from the set V. A graph which does not contain loops and multiple edges is a simple graph, a finite number of vertices and edges in a graph is a finite graph and undirected with p vertices and q edges. The cardinality of vertex set V of a graph is the order and the cardinality of edge set E is called the size of the graph G. The graph G - e is obtained from G by deleting an edge e.

Sum of the Graphs: The sum G_1+G_2 of two graphs G_1 and G_2 has vertex set $V(G_1)\cup V(G_2)$ and edge set $E(G_1+G_2) = E(G_1)\cup E(G_2)\cup u \in V(G_1)$ and $v \in V(G_2)$.

Union of Graph: The union of two graphs G_1 and G_2 is a graph $G_1 \cup G_2$ with vertex set $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$.

Date: 5-Dec-2018.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 26D10; Secondary 26D15.

Key words and phrases. Centriodal mean graph, Triangular Ladder, Polygonal chain, Square graph, Ladder.

Square Graph: The square graph denoted by G^2 of the graph G has $V(G^2)$ with u, v adjacent in G^2 Whenever $d(u, v) \leq 2$ in the graph G. The detailed survey on graph labeling are found in [2].

For other terminology and notations refer [3].

According to Beineke and Hegde graph labeling serves as a frontier between number theory and structure of graphs. The definitions which are useful to develop this paper are given below.

2. Centroidal mean labeling of a graph

In this section the Centroidal mean labeling of graphs containing cycles such as Triangular Ladder TL_n , cycle C_n , Polygonal chain G_{mn} , Square graph P_n^2 , $L_n \bigcirc K_{1,2}$, Ladder L_n are discussed using the following definition.

Definition 2.1. A Graph G with n vertices and m edges is called a Centroidal mean graph if the function $f: V(G) \to A \subseteq N$ to label the vertices $x \in V(G)$ with distinct labels f(x), and each edge $e = x_i x_j$ is labeled with $f^*(x_i x_j) = \left\lfloor \frac{2[(f(x_1))^2 + f(x_1)f(x_2) + (f(x_2))^2]}{3(f(x_1) + f(x_2))} \right\rfloor$ or $f^*(x_i x_j) = \left\lfloor \frac{2[(f(x_i))^2 + f(x_i)f(x_j) + (f(x_j))^2]}{3(f(x_i) + f(x_j))} \right\rfloor$ for every $x_i, x_j \in V(G)$ and $x_i \neq x_j$ are all distinct.

3. Main results

Theorem 3.1. A Triangular ladder TL_n is Centroidal mean graph.

Proof. Consider a Triangular ladder TL_n , with n vertices $x_1, x_2, x_3, \ldots, x_n$ as one path and $y_1, y_2, y_3, \ldots, y_n$ as other path.

The function $f: V(TL_n) \to \{1, 2, 3, \dots, (4n-2)\}$ is defined by $f(x_i) = 4i - 1$, $1 \leq i \leq n$ and $f(y_i) = 4i - 3$, $1 \leq i \leq n$ such that the induced function $f^*: E(G) \to N$ given by

$$f^*(x_i x_j) = \left\lfloor \frac{2[(f(x_i))^2 + f(x_i)f(x_j) + (f(x_j))^2]}{3(f(x_i) + f(x_j))} \right\rfloor$$

for every $x_i, x_j \in V(G)$

The edges $\{x_i, x_{i+1}\}$ are labeled by

$$f^*(x_i x_{i+1}) = \left\lfloor \frac{2[(f(x_i))^2 + f(x_i)f(x_{i+1}) + (f(x_{i+1}))^2]}{3(f(x_i) + f(x_{i+1}))} \right\rfloor = 4i+1; \quad 1 \le i \le (n-1)$$

The edges $\{y_i, y_{i+1}\}$ are labeled by

$$f^*(y_i y_{i+1}) = \left\lfloor \frac{2[(f(y_i))^2 + f(y_i)f(y_{i+1}) + (f(y_{i+1}))^2]}{3(f(y_i) + f(y_{i+1}))} \right\rfloor = 4i - 1; \quad 1 \le i \le (n - 1)$$

The edges $\{x_i, y_i\}$ are labeled by

$$f^*(x_i y_i) = \left\lfloor \frac{2[(f(x_i))^2 + f(x_i)f(y_i) + (f(y_i))^2]}{3(f(x_i) + f(y_i))} \right\rfloor = 4i - 2; \quad 1 \le i \le n$$

The edges $\{x_i, y_{i+1}\}$ are labeled by

$$f^*(x_i y_{i+1}) = \left\lfloor \frac{2[(f(x_i))^2 + f(x_i)f(y_{i+1}) + (f(y_{i+1}))^2]}{3(f(x_i) + f(y_{i+1}))} \right\rfloor = 4i; \quad 1 \le i \le (n-1)$$

are all distinct. Hence the Triangular ladder TL_n is Centroidal mean graph. \Box

Example 3.2. Consider the Triangular Ladder TL_n of n = 8. The following figure-1 shows the Centroidal mean labeling of a graph.

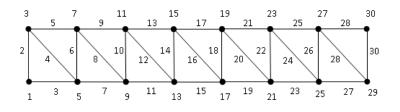


FIGURE 1. Triangular Ladder TL_8

Theorem 3.3. Any Cycle C_n , $n \ge 3$, is a Centroidal mean graph.

Proof. Consider a Cycle C_n of length n with vertices $x_1, x_2, x_3, \ldots, x_n$. Define a function $f: V(C_n) \to N$ by $f(x_i) = i, 1 \le i \le n$, Here f is an increasing function on $V(C_n)$, so f^* is also an increasing function on $E(C_n) - \{x_n x_1\}$, for every edge in $E(C_n) - \{x_n x_1\}$ we assign the label

$$f^*(x_i x_j) = \left\lceil \frac{2[(f(x_i))^2 + f(x_i)f(x_j) + (f(x_j))^2]}{3(f(x_i) + f(x_j))} \right\rceil$$

where $x_i, x_j \in V(C_n)$ and $f^*(x_n x_1) = 1$. Such that $f^*(e_i) \neq f^*(e_j)$ for $i \neq j$ and f^* is injective therefore f is a Centroidal mean labeling on C_n . Hence a Cycle C_n is a Centroidal mean graph. \Box

Example 3.4. Consider the Cycle of length 4 & 5. The labeling is as shown in figure-2

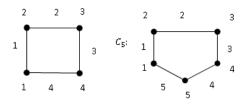


FIGURE 2. Cycle $C_4 \& C_5$

Theorem 3.5. The Polygonal chain $G_{m,n}$ is a Centroidal mean graph.

Proof. Consider a Polygonal chain $G_{m,n}$, in which

 $x_1, x_2, x_4, x_6, \ldots, x_{n-4}, x_{n-2}, x_{n+1}x_{n-1}, x_{n-3}, x_{n-5}, \ldots, x_7, x_3, x_1$ be the first cycle. The second cycle is connected to the first cycle at the vertex x_{n+1} .

Let $x_{n+1}, x_{n+2}, x_{n+4}, \ldots, x_{2n+1}, x_{2n-1}, x_{2n-3}, \ldots, x_{n+7}, x_{n+5}, x_{n+3}, x_{n+1}$ be the second cycle. The third cycle is connected to the cycle at the vertex x_{2n+1} . The third cycle be $x_{2n+1}, x_{2n+2}, x_{2n+4}, \ldots, x_{3n+1}, x_{3n-1}, x_{n-3}, \ldots, x_{2n+5}, x_{2n+3}, x_{2n+1}$. In general r^{th} cycle is connected to the $(r-1)^{th}$ cycle at the vertex x_{rn+1} . Let the r^{th} cycle be $x_{rn+1}, x_{rn+2}, x_{rn+4}, \ldots, x_{(r+1)n-4}, x_{(r+1)n-2}, \ldots, x_{rn+5}, x_{rn+3}, x_{rn+1}$

and the graph has m cycles. Define a function $f: V(G(m, n)) \rightarrow \{1, 2, 3, \dots, (q+1)\}$ by $f(x_i) = i$ for $1 \leq i \leq mn+1$ and $f(x_n) = mn+1$.

Then the label of the edges are done by

$$f^*(x_i x_j) = \left\lfloor \frac{2[(f(x_i))^2 + f(x_i)f(x_j) + (f(x_j))^2]}{3(f(x_i) + f(x_j))} \right\rfloor; \quad i \neq j,$$

are all distinct. Hence $G_{m,n}$ is a Centroidal mean graph.

Example 3.6. The following figure-3 shows the Centroidal mean labeling of polygonal chain G_{mn} .

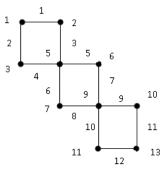


FIGURE 3. Polygonal chain G_{mn} .

Theorem 3.7. The square graph P_n^2 is a Centroidal mean graph.

Proof. If a path P_n of n vertices $x_1, x_2, x_3, \ldots x_n$ then P_n^2 has n vertices and (2n-3) edges is a graph obtained by joining the vertices whenever $d(u, v) \leq 2$. Define $f: V(P_n^2) \to N$ by $f(x_i) = 2i - 1, \quad 1 \leq i \leq (n-1)$ and $f(x_n) = 2n - 2$. The edges are labeled by

$$f^*(x_i x_j) = \left\lfloor \frac{2[(f(x_i))^2 + f(x_i)f(x_j) + (f(x_j))^2]}{3(f(x_i) + f(x_j))} \right\rfloor$$

for all $\{x_i x_j\} = e \in E(P_n^2)$ such that $f^*(e_i) \neq f^*(e_j)$ for $i \neq j$ therefore f^* is injective.

Hence P_n^2 is a Centroidal mean graph.

Example 3.8. Consider a path P_8 with 8 vertices and P_8^2 is a graph obtained by joining the vertices when ever $d(u, v) \leq 2$. The labeling is as shown in the figure-4.

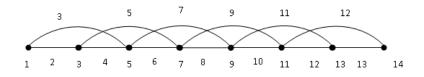


FIGURE 4. square graph P_8^2

Theorem 3.9. A Graph $L_n \odot K_{1,2}$ is a Centroidal mean graph

Proof. Consider a graph L_n be a Ladder with $u_1, u_2, u_3, \ldots, u_n$ and $v_1, v_2, v_3, \ldots, v_n$ are end vertices of a ladder. Let w_i and x_i be the pendent vertex adjacent to u_i ; y_i and z_i be the pendant vertex adjacent to v_i .

Define a function, $f: V(L_n \odot K_{1,2}) \to \{1, 2, \dots, p+q\}$ by, $f(u_i) = 13i - 2, \quad 1 \le i \le n;$ $f(v_i) = 13i - 7, \quad 1 \le i \le n$ $f(w_i) = 13i - 8, \quad 1 \le i \le n;$ $f(x_i) = 13i - 4, \quad 1 \le i \le n$ $f(y_i) = 13i - 12, \quad 1 \le i \le n;$ $f(z_i) = 13i - 11, \quad 1 \le i \le n$ Edges are labeled as follows,

The edges $\{u_i u_{i+1}\}$ are labeled by

$$f^*(u_i u_{i+1}) = \left\lfloor \frac{2[(f(u_i))^2 + f(u_i)f(u_{i+1}) + (f(u_{i+1}))^2]}{3(f(u_i) + f(u_{i+1}))} \right\rfloor = 13i + 4; \quad 1 \le i \le n - 1$$

The edges $\{v_i v_{i+1}\}$ are labeled by

$$f^*(v_i v_{i+1}) = \left\lfloor \frac{2[(f(v_i))^2 + f(v_i)f(v_{i+1}) + (f(v_{i+1}))^2]}{3(f(v_i) + f(v_{i+1}))} \right\rfloor = 13i - 1; \quad 1 \le i \le n - 1$$

The edges $\{u_i w_i\}$ are labeled by

$$f^*(u_i w_i) = \left\lfloor \frac{2[(f(u_i))^2 + f(u_i)f(w_i) + (f(w_i))^2]}{3(f(u_i) + f(w_i))} \right\rfloor = 13i - 6; \quad 1 \le i \le n$$

The edges $\{u_i x_i\}$ are labeled by

$$f^*(u_i x_i) = \left\lfloor \frac{2[(f(u_i))^2 + f(u_i)f(x_i) + (f(x_i))^2]}{3(f(u_i) + f(x_i))} \right\rfloor = 13i - 3; \quad 1 \le i \le n$$

The edges $\{u_i v_i\}$ are labeled by

$$f^*(u_i v_i) = \left\lceil \frac{2[(f(u_i))^2 + f(u_1)f(v_i) + (f(v_i))^2]}{3(f(u_i) + f(v_i))} \right\rceil = 13i - 5; \quad 1 \le i \le n$$

The edges $\{v_i y_i\}$ are labeled by

$$f^*(v_i y_i) = \left\lfloor \frac{2[(f(v_i))^2 + f(v_i)f(y_i) + (f(y_i))^2]}{3(f(v_i) + f(y_i))} \right\rfloor = 13i - 10; \quad 1 \le i \le n$$

The edges $\{v_i z_i\}$ are labeled by

$$f^*(v_i z_i) = \left\lceil \frac{2[(f(v_i))^2 + f(v_i)f(z_i) + (f(z_i))^2]}{3(f(v_i) + f(z_i))} \right\rceil = 13i - 9; \quad 1 \le i \le n$$

are all distinct.

Hence $L_n \odot K_{1,2}$ is a Centroidal mean graph.

Example 3.10. Consider a Graph $L_4 \odot K_{1,2}$. The labeling is as shown in the figure-5.

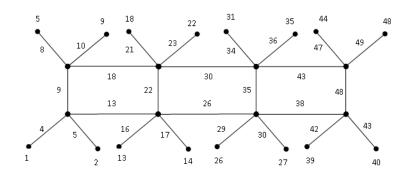


FIGURE 5. Graph $L_4 \bigcirc K_{1,2}$

Theorem 3.11. A Ladder L_n is a Centroidal mean graph.

Proof. Consider a Ladder L_n . Let x_1x_2, \ldots, x_n and y_1, y_2, \ldots, y_n be two paths of length n in the ladder L_n . Define a function $f: V(TL_n) \to \{1, 2, \ldots, p+q\}$ by, $f(x_i) = 6i - 3; \quad 1 \le i \le n$ $f(y_i) = 6i - 5; \quad 1 \le i \le n$ Edges are labeled by,

$$f^*(x_i x_{i+1}) = \left\lfloor \frac{2[(f(x_i))^2 + f(x_i)f(x_{i+1}) + (f(x_{i+1}))^2]}{3(f(x_i) + f(x_{i+1}))} \right\rfloor; \quad 1 \le i \le (n-1)$$
$$f^*(x_i y_i) = \left\lfloor \frac{2[(f(x_i))^2 + f(x_i)f(y_i) + (f(y_i))^2]}{3(f(x_i) + f(y_i))} \right\rfloor; \quad 1 \le i \le n$$

and

,

$$f^*(y_i y_{i+1}) = \left\lfloor \frac{2[(f(y_i))^2 + f(y_i)f(y_{i+1}) + (f(y_{i+1}))^2]}{3(f(y_i) + f(y_{i+1}))} \right\rfloor; \quad 1 \le i \le (n-1)$$

are all distinct.

We observe that f is a Centroidal mean labeling and the ladder L_n is Centroidal mean graphs.

Example 3.12. Consider a ladder L_5 . The labeling is as shown in the figure-6.

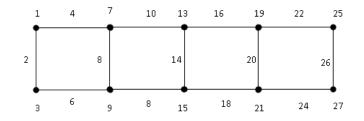


FIGURE 6. Ladder Graph L_5

4. Acknowledgement

The authors are thankful to the referees for their valuable suggestions and fruitful comments.

References

- P. S. Bullen, Handbook of means and their inequalities, Kluwer Acad. Publ., Dordrecht, 2003.
- J.A.Gallian, A Dynamic Survey of Graph Labeling. The Electronic Journal of combinatorics, 2013.
- 3. Harary. F, Graph Theory, Narosa publishing House, New Delhi, (1988).
- R Sampath Kumar, G Narasimhan and R Chandrasekhar, Contra Harmonic mean labeling of graph, Mapana J Sci, 12(3), 2013, pp. 23-29.
- Sampath kumar R, Narasimhan G and K M Nagaraja, Heron mean labeling of graph, International Journal of Recent Scientific Research, 8(9), 2017, pp. 19808-19811.
- S. Somasundaram and P Vidhyarani, Geometric mean labeling of graphs, Bulletin of Pure and Applied Sciences, 30(2), 2011, pp. 153-160.
- S. Somasundaram and R.Ponraj, "Mean Labeling of graphs", National Academy of Science Letters (1988), 26 (2003), pp. 210-213.
- 8. G. Toader and S. Toader, "Greek means and Arithmetic mean and Geometric mean", RGMIA Monograph, Australia, 2005.

¹DEPARTMENT OF MATHEMATICS, R N S INSTITUTE OF TECHNOLOGY, UTTARAHALLI -KENGERI MAIN ROAD R R NAGAR POST, BENGALURU - 560 098, INDIA

E-mail address: r.sampathkumar1967@gmail.com

²2DEPARTMENT OF MATHEMATICS, J S S ACADEMY OF TECHNICAL EDUCATION, UTTARAHALLI-KENGERI MAIN ROAD, BENGALURU, KARNATAKA, INDIA. *E-mail address:* nagkmn@gmail.com