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Abstract. In this paper the Centroidal mean labeling of cycle containing
graphs such as Triangular Ladder TLn, cycle Cn, Polygonal chain Gmn, Square
graph P 2

n , Ln

⊙
K1,2, Ladder Ln are found.

1. Introduction and preliminaries

Abundant literature exists as of today concerning the structure of graphs admit-
ting a variety of function assigning real numbers to their elements so that given
conditions are satisfied. Here we are interested the study of vertex functions
f : V (G) → A,A ⊆ N for which the induced edge function f ∗ : E(G) → N is

defined as f ∗(uv) = d2[f(u)
2+f(u)f(v)+f(v)2]
3(f(u)+f(v))

e or f ∗(uv) = b2[f(u)
2+f(u)f(v)+f(v)2]
3(f(u)+f(v))

c for

every uv ∈ E(G) are all distinct.
As we know that the notion of mean labeling was introduced in a paper

by Somasundaram and Ponraj [7]. A graph G with p vertices and q edges is
called a mean graph if there is an injective function f from the vertices of G

to 0, 1, 2, 3, 4 . . . , q such that when each edge uv is labeled with (f(u)+f(v))
2

, if

f(u) +f(v) is even, and (f(u)+f(v)+1)
2

if f(u) +f(v) is odd, then the resulting edge
labels are distinct.

We introduce Centroidal mean labeling of some standard graphs.

Graph: A graph G is a pair (V,E), where V is a nonempty set and E is a
set of unordered pairs of elements taken from the set V . A graph which does not
contain loops and multiple edges is a simple graph, a finite number of vertices
and edges in a graph is a finite graph and undirected with p vertices and q edges.
The cardinality of vertex set V of a graph is the order and the cardinality of edge
set E is called the size of the graph G. The graph G − e is obtained from G by
deleting an edge e.

Sum of the Graphs: The sum G1+G2 of two graphs G1 and G2 has vertex set
V (G1)∪V (G2) and edge set E(G1+G2) = E(G1)∪E(G2)∪ u ∈ V (G1) and v ∈ V (G2).

Union of Graph: The union of two graphs G1 and G2 is a graph G1 ∪ G2

with vertex set V (G1 ∪G2) = V (G1)∪V (G2) and E(G1 ∪G2) = E(G1)∪E(G2).
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Square Graph: The square graph denoted by G2 of the graph G has V (G2)
with u, v adjacent in G2 Whenever d(u, v) ≤ 2 in the graph G. The detailed
survey on graph labeling are found in [2].

For other terminology and notations refer [3].
According to Beineke and Hegde graph labeling serves as a frontier between

number theory and structure of graphs. The definitions which are useful to
develop this paper are given below.

2. Centroidal mean labeling of a graph

In this section the Centroidal mean labeling of graphs containing cycles such
as Triangular Ladder TLn, cycle Cn, Polygonal chain Gmn, Square graph P 2

n ,
Ln

⊙
K1,2, Ladder Ln are discussed using the following definition.

Definition 2.1. A Graph G with n vertices and m edges is called a Centroidal
mean graph if the function f : V (G) → A ⊆ N to label the vertices x ∈ V (G)
with distinct labels f(x), and each edge e = xixj is labeled with f ∗(xixj) =⌈
2[(f(x1))2+f(x1)f(x2)+(f(x2))2]

3(f(x1)+f(x2))

⌉
or f ∗(xixj) =

⌊
2[(f(xi))

2+f(xi)f(xj)+(f(xj))
2]

3(f(xi)+f(xj))

⌋
for every

xi, xj ∈ V (G) and xi 6= xj are all distinct.

3. Main results

Theorem 3.1. A Triangular ladder TLn is Centroidal mean graph.

Proof. Consider a Triangular ladder TLn, with n vertices x1, x2, x3, . . . , xn as one
path and y1, y2, y3, . . . , yn as other path.
The function f : V (TLn) → {1, 2, 3, . . . , (4n − 2)} is defined by f(xi) = 4i −
1, 1 ≤ i ≤ n and f(yi) = 4i − 3, 1 ≤ i ≤ n such that the induced function
f ∗ : E(G)→ N given by

f ∗(xixj) =

⌊
2[(f(xi))

2 + f(xi)f(xj) + (f(xj))
2]

3(f(xi) + f(xj))

⌋
for every xi, xj ∈ V (G)

The edges {xi, xi+1} are labeled by

f ∗(xixi+1) =

⌊
2[(f(xi))

2 + f(xi)f(xi+1) + (f(xi+1))
2]

3(f(xi) + f(xi+1))

⌋
= 4i+1; 1 ≤ i ≤ (n−1)

The edges {yi, yi+1} are labeled by

f ∗(yiyi+1) =

⌊
2[(f(yi))

2 + f(yi)f(yi+1) + (f(yi+1))
2]

3(f(yi) + f(yi+1))

⌋
= 4i−1; 1 ≤ i ≤ (n−1)

The edges {xi, yi} are labeled by

f ∗(xiyi) =

⌊
2[(f(xi))

2 + f(xi)f(yi) + (f(yi))
2]

3(f(xi) + f(yi))

⌋
= 4i− 2; 1 ≤ i ≤ n
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The edges {xi, yi+1} are labeled by

f ∗(xiyi+1) =

⌊
2[(f(xi))

2 + f(xi)f(yi+1) + (f(yi+1))
2]

3(f(xi) + f(yi+1))

⌋
= 4i; 1 ≤ i ≤ (n− 1)

are all distinct. Hence the Triangular ladder TLn is Centroidal mean graph. �

Example 3.2. Consider the Triangular Ladder TLn of n = 8. The following
figure-1 shows the Centroidal mean labeling of a graph.

Figure 1. Triangular Ladder TL8

Theorem 3.3. Any Cycle Cn, n ≥ 3, is a Centroidal mean graph.

Proof. Consider a Cycle Cn of length n with vertices x1, x2, x3, . . . , xn. Define a
function f : V (Cn)→ N by f(xi) = i, 1 ≤ i ≤ n, Here f is an increasing function
on V (Cn), so f ∗ is also an increasing function on E(Cn)−{xnx1}, for every edge
in E(Cn)− {xnx1} we assign the label

f ∗(xixj) =

⌈
2[(f(xi))

2 + f(xi)f(xj) + (f(xj))
2]

3(f(xi) + f(xj))

⌉
where xi, xj ∈ V (Cn) and f ∗(xnx1) = 1. Such that f ∗(ei) 6= f ∗(ej) for i 6= j and
f ∗ is injective therefore f is a Centroidal mean labeling on Cn.
Hence a Cycle Cn is a Centroidal mean graph. �

Example 3.4. Consider the Cycle of length 4 & 5. The labeling is as shown in
figure-2

Figure 2. Cycle C4 & C5
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Theorem 3.5. The Polygonal chain Gm,n is a Centroidal mean graph.

Proof. Consider a Polygonal chain Gm,n , in which
x1, x2, x4, x6, . . . xn−4, xn−2, xn+1xn−1, xn−3, xn−5, . . . , x7, x3, x1 be the first cycle.
The second cycle is connected to the first cycle at the vertex xn+1.
Let xn+1, xn+2, xn+4, . . . , x2n+1, x2n−1, x2n−3, . . . , xn+7, xn+5, xn+3, xn+1 be the sec-
ond cycle. The third cycle is connected to the cycle at the vertex x2n+1. The
third cycle be x2n+1, x2n+2, x2n+4, . . . , x3n+1, x3n−1, xn−3, . . . , x2n+5, x2n+3, x2n+1.
In general rth cycle is connected to the (r − 1)th cycle at the vertex xrn+1. Let
the rth cycle be xrn+1, xrn+2, xrn+4, . . . , x(r+1)n−4, x(r+1)n−2, . . . , xrn+5, xrn+3, xrn+1

and the graph has m cycles.
Define a function f : V (G(m,n)) → {1, 2, 3, . . . , (q + 1)} by f(xi) = i for
1 ≤ i ≤ mn + 1 and f(xn) = mn + 1.
Then the label of the edges are done by

f ∗(xixj) =

⌊
2[(f(xi))

2 + f(xi)f(xj) + (f(xj))
2]

3(f(xi) + f(xj))

⌋
; i 6= j,

are all distinct. Hence Gm,n is a Centroidal mean graph. �

Example 3.6. The following figure-3 shows the Centroidal mean labeling of
polygonal chain Gmn.

Figure 3. Polygonal chain Gmn.

Theorem 3.7. The square graph P 2
n is a Centroidal mean graph.

Proof. If a path Pn of n vertices x1, x2, x3, . . . xn then P 2
n has n vertices and

(2n− 3) edges is a graph obtained by joining the vertices whenever d(u, v) ≤ 2.
Define f : V (P 2

n)→ N by
f(xi) = 2i− 1, 1 ≤ i ≤ (n− 1) and f(xn) = 2n− 2.
The edges are labeled by

f ∗(xixj) =

⌊
2[(f(xi))

2 + f(xi)f(xj) + (f(xj))
2]

3(f(xi) + f(xj))

⌋
for all {xixj} = e ∈ E(P 2

n) such that f ∗(ei) 6= f ∗(ej) for i 6= j therefore f ∗ is
injective.
Hence P 2

n is a Centroidal mean graph. �
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Example 3.8. Consider a path P8 with 8 vertices and P 2
8 is a graph obtained

by joining the vertices when ever d(u, v) ≤ 2. The labeling is as shown in the
figure-4.

Figure 4. square graph P 2
8

Theorem 3.9. A Graph Ln

⊙
K1,2 is a Centroidal mean graph

Proof. Consider a graph Ln be a Ladder with u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn
are end vertices of a ladder. Let wi and xi be the pendent vertex adjacent to ui

; yi and zi be the pendant vertex adjacent to vi.
Define a function, f : V (Ln

⊙
K1,2)→ {1, 2, . . . , p + q} by,

f(ui) = 13i− 2, 1 ≤ i ≤ n; f(vi) = 13i− 7, 1 ≤ i ≤ n
f(wi) = 13i− 8, 1 ≤ i ≤ n; f(xi) = 13i− 4, 1 ≤ i ≤ n
f(yi) = 13i− 12, 1 ≤ i ≤ n; f(zi) = 13i− 11, 1 ≤ i ≤ n
Edges are labeled as follows,
The edges {uiui+1} are labeled by

f ∗(uiui+1) =

⌊
2[(f(ui))

2 + f(ui)f(ui+1) + (f(ui+1))
2]

3(f(ui) + f(ui+1))

⌋
= 13i+4; 1 ≤ i ≤ n−1

The edges {vivi+1} are labeled by

f ∗(vivi+1) =

⌊
2[(f(vi))

2 + f(vi)f(vi+1) + (f(vi+1))
2]

3(f(vi) + f(vi+1))

⌋
= 13i− 1; 1 ≤ i ≤ n− 1

The edges {uiwi} are labeled by

f ∗(uiwi) =

⌊
2[(f(ui))

2 + f(ui)f(wi) + (f(wi))
2]

3(f(ui) + f(wi))

⌋
= 13i− 6; 1 ≤ i ≤ n

The edges {uixi} are labeled by

f ∗(uixi) =

⌊
2[(f(ui))

2 + f(ui)f(xi) + (f(xi))
2]

3(f(ui) + f(xi))

⌋
= 13i− 3; 1 ≤ i ≤ n

The edges {uivi} are labeled by

f ∗(uivi) =

⌈
2[(f(ui))

2 + f(u1)f(vi) + (f(vi))
2]

3(f(ui) + f(vi))

⌉
= 13i− 5; 1 ≤ i ≤ n
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The edges {viyi} are labeled by

f ∗(viyi) =

⌊
2[(f(vi))

2 + f(vi)f(yi) + (f(yi))
2]

3(f(vi) + f(yi))

⌋
= 13i− 10; 1 ≤ i ≤ n

The edges {vizi} are labeled by

f ∗(vizi) =

⌈
2[(f(vi))

2 + f(vi)f(zi) + (f(zi))
2]

3(f(vi) + f(zi))

⌉
= 13i− 9; 1 ≤ i ≤ n

are all distinct.
Hence Ln

⊙
K1,2 is a Centroidal mean graph. �

Example 3.10. Consider a Graph L4

⊙
K1,2. The labeling is as shown in the

figure-5.

Figure 5. Graph L4

⊙
K1,2

Theorem 3.11. A Ladder Ln is a Centroidal mean graph.

Proof. Consider a Ladder Ln. Let x1x2, . . . , xn and y1, y2, . . . , yn be two paths of
length n in the ladder Ln.
Define a function f : V (TLn)→ {1, 2, ..., p + q} by,
f(xi) = 6i− 3; 1 ≤ i ≤ n
f(yi) = 6i− 5; 1 ≤ i ≤ n
Edges are labeled by,

f ∗(xixi+1) =

⌊
2[(f(xi))

2 + f(xi)f(xi+1) + (f(xi+1))
2]

3(f(xi) + f(xi+1))

⌋
; 1 ≤ i ≤ (n− 1)

,

f ∗(xiyi) =

⌊
2[(f(xi))

2 + f(xi)f(yi) + (f(yi))
2]

3(f(xi) + f(yi))

⌋
; 1 ≤ i ≤ n

and

f ∗(yiyi+1) =

⌊
2[(f(yi))

2 + f(yi)f(yi+1) + (f(yi+1))
2]

3(f(yi) + f(yi+1))

⌋
; 1 ≤ i ≤ (n− 1)

are all distinct.
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We observe that f is a Centroidal mean labeling and the ladder Ln is Centroidal
mean graphs. �

Example 3.12. Consider a ladder L5. The labeling is as shown in the figure-6.

Figure 6. Ladder Graph L5
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